Quadrantid meteor shower 2011

Dominic Ford, Editor
From the Meteor Showers feed

The Quadrantid meteor shower will be active from 12 December to 12 January, producing its peak rate of meteors around 4 January.

Over this period, there will be a chance of seeing Quadrantid meteors whenever the shower's radiant point – in the constellation Bootes – is above the horizon.

From Columbus the shower will be active each night from dusk until 20:15 when its radiant point sets below your western horizon. It then becomes active again at 21:38 when the radiant once again rises above your eastern horizon.

The radiant point culminates (is highest in the sky) after dawn – at around 09:00 EST – and so the shower is likely produce its best displays shortly before dawn, when its radiant point is highest.

At this time, the Earth's rotation turns Columbus to face optimally towards the direction of the incoming meteors, maximising the number that rain vertically downwards, producing short trails close to the radiant point. At other times, there will be fewer meteors burning up over Columbus, but those that do will tend to enter the atmosphere at an oblique angle, producing long-lived meteors that may traverse a wide area of the sky before completely burning up.

The shower is expected to reach peak activity at around 21:00 EST on 3 January 2011.

Observing prospects

At its peak, the shower is expected to produce a nominal rate of around 120 meteors per hour (ZHR). However, this zenithal hourly rate is calculated assuming a perfectly dark sky and that the radiant of the shower is situated directly overhead. In practice, any real observing sight will fall short of these ideal conditions. The number of meteors you are likely to see is thus lower than this, and can be estimated using the ZHR formula.

From Columbus, the radiant of the shower will appear at a peak altitude of 70° above your horizon, and on the basis of this, we estimate that you may be able to see up to 113 meteors per hour at the shower's peak.

The shower will peak close to new moon, and so moonlight will present minimal interference.

The origin of the shower

Meteor showers arise when the Earth passes through streams of debris left behind in the wake of comets and asteroids. Over time, the pieces of grit-like debris in these streams distribute themselves along the length of the parent object's orbit around the solar system.

Shooting stars are seen whenever one of these pieces of debris collides with the Earth's atmosphere, typically burning up at an altitude of around 70 to 100 km.

On certain days of the year the Earth's orbit passes through particularly dense streams, associated with comets or asteroids which have vented particularly large amounts of solid material to space, and this gives rise to an annual meteor shower. Such showers recur on an annual basis, whenever the Earth passes the particular point in its orbit where it crosses the particular stream of material.

All of the meteors associated with any particular shower appear to radiate from a common point on the sky (not drawn to scale).

The meteors that are associated with any particular meteor shower can be distinguished from others because their paths appear to radiate outwards from a common point on the sky, which points back in the direction from which their orbital motion brought them.

This is because the grit particles in any particular stream are travelling in almost exactly the same direction when they cross the Earth's orbit, owing to having very similar orbits to the parent object they came from. They strike the Earth from almost exactly the same direction, and at the same speed.

To see the most meteors, the best place to look is not directly at the radiant itself, but at any dark patch of sky which is around 30–40° away from it. It is at around this distance from the radiant that the most meteors will be seen.

By determining the position of this radiant point on the sky, it is possible to work out the orbit of the stream giving rise to any particular meteor shower. It is sometimes even be possible to identify the particular body responsible for creating the debris stream, if there is a known comet or asteroid with a very similar orbit.

The parent body responsible for creating the Quadrantid shower has been identified as asteroid 2003 EH1.

The radiant of the Quadrantid meteor shower is at around right ascension 15h20m, declination 48°N, as shown by the green circle on the planetarium above.

The sky on 29 Nov 2024

The sky on 29 November 2024
Sunrise
07:30
Sunset
17:07
Twilight ends
18:43
Twilight begins
05:54


Waning Crescent

0%

28 days old

Planets
Rise Culm. Set
Mercury 08:40 13:17 17:53
Venus 10:52 15:26 20:01
Moon 06:07 10:59 15:44
Mars 21:11 04:30 11:50
Jupiter 17:38 01:01 08:24
Saturn 13:19 18:53 00:26
All times shown in EST.

Source

The position of the radiant of this shower, and its predicted hourly rate, were taken from International Meteor Organisation's List of Meteor Showers.

Image credit

© Jacek Halicki 2016. Perseid meteor seen in 2016 from Poland.

Share