Lunar occultation of Spica

Dominic Ford, Editor
From the Lunar Occultations feed


Objects: Spica

The Moon will pass in front of Spica (Alpha Virginis), creating a lunar occultation visible from Alaska and western Canada. Although the occultation will only be visible across part of the world – because the Moon is so close to the Earth that its position in the sky varies by as much as two degrees across the world – a close conjunction between the pair will be more widely visible.

The occultation will be visible from Cambridge. It will begin with the disappearance of Spica (Alpha Virginis) behind the Moon at 12:42 EST, though in daylight. Its reappearance will be visible at 13:48 EST, though in daylight and at a low altitude of 0.8 degrees.

Extreme caution is necessary when pointing binoculars or telescopes at the sky when the Sun is above the horizon, as even a momentary glance at the Sun through such an instrument can cause permanent blindness.

The map below shows the visibility of the occultation across the world. Separate contours show where the disappearance of Spica (Alpha Virginis) is visible (shown in red), and where its reappearance is visible (shown in blue). Solid contours show where each event is likely to be visible through binoculars at a reasonable altitude in the sky. Dotted contours indicate where each event occurs above the horizon, but may not be visible due to the sky being too bright or the Moon being very close to the horizon.

Outside the contours, the Moon will not pass in front of Spica (Alpha Virginis) at any time, or is below the horizon at the time of the occultation. However, a close conjunction between the pair will be visible across much of the world.

The map can be downloaded in PNG , PDF or SVG format. A KMZ file , is also available, which can be opened in Google Earth to provide a higher resolution map.

A complete list of the countries and territories where the occultation will be visible is as follows:

Country Time span
(UTC)
Alaska 15:54–17:21
Canada 16:10–17:29

Lunar occultations are only ever visible from a small fraction of the Earth's surface. Since the Moon is much closer to the Earth than other celestial objects, its exact position in the sky differs depending on your exact location on Earth due to its large parallax. The position of the Moon as seen from two points on opposite sides of the Earth varies by up to two degrees, or four times the diameter of the full moon.

This means that if the Moon is aligned to pass in front of a particular object for an observer on one side of the Earth, it will appear up to two degrees away from that object on the other side of the Earth.

At the time of the occultation, the Moon will be 0 days past new moon and will be 14% illuminated. Spica (Alpha Virginis) will disappear behind the illuminated side of the Moon and reappear from behind the unilluminated side of the Moon.

The position of Spica (Alpha Virginis) at the moment of the occultation will be as follows:

Object Right Ascension Declination Constellation Magnitude Angular Size
Spica (Alpha Virginis) 13h25m10s 11°09'S Virgo 1.1 0'00"

The coordinates above are given in J2000.0.

Next/previous occultations

« Previous Next »
Visible from the Contiguous United States Worldwide Worldwide Visible from the Contiguous United States
18 Feb 2006 08 Sep 2013 Occultations of Spica (Alpha Virginis) 27 Dec 2013 14 Jul 2024
25 May 2013 11 Sep 2013 Occultations 01 Dec 2013 11 Sep 2014

The sky on 21 Nov 2024

The sky on 21 November 2024
Sunrise
06:40
Sunset
16:16
Twilight ends
17:55
Twilight begins
05:01


Waning Gibbous

56%

20 days old

Planets
Rise Culm. Set
Mercury 08:38 12:59 17:20
Venus 10:08 14:29 18:51
Moon 20:55 04:36 12:04
Mars 20:43 04:09 11:36
Jupiter 17:18 00:49 08:20
Saturn 13:06 18:36 00:07
All times shown in EST.

Source

The circumstances of this event were computed using the DE430 planetary ephemeris published by the Jet Propulsion Laboratory (JPL).

This event was automatically generated by searching the ephemeris for planetary alignments which are of interest to amateur astronomers, and the text above was generated based on an estimate of your location.

Image credit

The Moon in conjunction with Venus and Jupiter, with the Very Large Telescope in the foreground. Image © Y. Beletsky, ESO, 2009.

Share