The Moon will pass in front of Jupiter, creating a lunar occultation visible from countries and territories including Canada, the Contiguous United States, Alaska and western Greenland amongst others. Although the occultation will only be visible across part of the world – because the Moon is so close to the Earth that its position in the sky varies by as much as two degrees across the world – a close conjunction between the pair will be more widely visible.
The occultation will be visible from Cambridge. It will begin with the disappearance of Jupiter behind the Moon at 10:30 EDT, though in daylight. Its reappearance will be visible at 11:40 EDT, though in daylight.
Extreme caution is necessary when pointing binoculars or telescopes at the sky when the Sun is above the horizon, as even a momentary glance at the Sun through such an instrument can cause permanent blindness.
The map below shows the visibility of the occultation across the world. Separate contours show where the disappearance of Jupiter is visible (shown in red), and where its reappearance is visible (shown in blue). Solid contours show where each event is likely to be visible through binoculars at a reasonable altitude in the sky. Dotted contours indicate where each event occurs above the horizon, but may not be visible due to the sky being too bright or the Moon being very close to the horizon.
Outside the contours, the Moon will not pass in front of Jupiter at any time, or is below the horizon at the time of the occultation. However, a close conjunction between the pair will be visible across much of the world.
The map can be downloaded in PNG , PDF or SVG format. A KMZ file , is also available, which can be opened in Google Earth to provide a higher resolution map.
The animation below shows the path of the occultation across the Earth's globe. The red circle shows where the Moon appears in front of Jupiter.
A complete list of the countries and territories where the occultation will be visible is as follows:
Country | Time span (UTC) |
Canada | 13:10–15:41 |
The Contiguous United States | 13:33–15:56 |
Alaska | 13:02–14:18 |
Greenland | 14:00–14:59 |
Venezuela | 15:42–16:38 |
Russia | 13:04–14:10 |
Brazil | 16:00–16:44 |
Guyana | 15:51–16:40 |
Suriname | 15:56–16:42 |
Cuba | 15:07–16:12 |
French Guiana | 15:57–16:43 |
Dominican Republic | 15:18–16:22 |
Haiti | 15:17–16:18 |
Colombia | 15:42–16:20 |
Bahamas | 14:55–16:13 |
Jamaica | 15:23–16:09 |
Puerto Rico | 15:23–16:26 |
Trinidad and Tobago | 15:43–16:36 |
The Portuguese Azores | 15:22–15:47 |
Guadeloupe | 15:31–16:32 |
Saint Vincent and the Grenadines | 15:38–16:35 |
Turks and Caicos Islands | 15:12–16:16 |
Barbados | 15:38–16:36 |
British Virgin Islands | 15:24–16:27 |
Cayman Islands | 15:24–15:54 |
Martinique | 15:34–16:33 |
Curacao | 15:41–16:25 |
Saint Kitts and Nevis | 15:28–16:30 |
Saint Lucia | 15:36–16:34 |
U.S. Virgin Islands | 15:24–16:27 |
Antigua and Barbuda | 15:27–16:30 |
Dominica | 15:33–16:32 |
Anguilla | 15:26–16:28 |
Saint Pierre and Miquelon | 14:45–15:35 |
Bonaire, Saint Eustatius and Saba | 15:27–16:28 |
Grenada | 15:40–16:35 |
Bermuda | 14:56–16:04 |
Montserrat | 15:29–16:30 |
Aruba | 15:41–16:23 |
Sint Maarten | 15:26–16:28 |
Saint Barthelemy | 15:26–16:28 |
Saint Martin | 15:26–16:28 |
Navassa Island | 15:22–16:12 |
Lunar occultations are only ever visible from a small fraction of the Earth's surface. Since the Moon is much closer to the Earth than other celestial objects, its exact position in the sky differs depending on your exact location on Earth due to its large parallax. The position of the Moon as seen from two points on opposite sides of the Earth varies by up to two degrees, or four times the diameter of the full moon.
This means that if the Moon is aligned to pass in front of a particular object for an observer on one side of the Earth, it will appear up to two degrees away from that object on the other side of the Earth.
At the time of the occultation, the Moon will be 0 days past new moon and will be 25% illuminated. Jupiter will disappear behind the illuminated side of the Moon and reappear from behind the unilluminated side of the Moon.
The position of Jupiter at the moment of the occultation will be as follows:
Object | Right Ascension | Declination | Constellation | Magnitude | Angular Size |
Jupiter | 10h25m50s | 10°43'N | Leo | -1.9 | 0'33" |
The coordinates above are given in J2000.0.
Next/previous occultations
« Previous | Next » | |||
Visible from the Contiguous United States | Worldwide | Worldwide | Visible from the Contiguous United States | |
05 Jul 2059 | 29 Sep 2062 | Occultations of Jupiter | 24 Nov 2062 | 26 Aug 2070 |
27 Feb 2062 | 22 Oct 2062 | Occultations | 03 Nov 2062 | 09 Feb 2063 |
The sky on 26 Nov 2024
The sky on 26 November 2024 | ||||||||||||||||||||||||||||||||||
17% 25 days old |
All times shown in EST.
|
Source
The circumstances of this event were computed using the DE430 planetary ephemeris published by the Jet Propulsion Laboratory (JPL).
This event was automatically generated by searching the ephemeris for planetary alignments which are of interest to amateur astronomers, and the text above was generated based on an estimate of your location.
Related news
24 Mar 2062 | – Jupiter ends retrograde motion |
25 Dec 2062 | – Jupiter enters retrograde motion |
23 Feb 2063 | – Jupiter at opposition |
26 Apr 2063 | – Jupiter ends retrograde motion |
Image credit
The Moon in conjunction with Venus and Jupiter, with the Very Large Telescope in the foreground. Image © Y. Beletsky, ESO, 2009.