None available.

Penumbral lunar eclipse

Dominic Ford, Editor
From the Eclipses feed

Objects: The Moon

Simulation of the eclipse as seen from Cambridge
Time:       Altitude: °      Azimuth: °




The Moon will pass through the Earth's shadow between 23:08 and 01:53 EDT, creating a penumbral lunar eclipse. The eclipse will be visible any location where the Moon is above the horizon at the time, including from Antarctica, the Americas and Africa.

It will be visible from Cambridge in the southern sky. The Moon will lie 23° above the horizon at the moment of greatest eclipse.

Maximum eclipse will occur at 00:31 (all times given in Cambridge time).

The simulation to the right shows Moon's path relative to the Earth's shadow. The outer grey circle is the Earth's penumbra, within which the Earth blocks part of the Sun's light, making the Moon appear less bright than usual, but not completely dark. The inner black circle is the umbra, within which the Earth entirely blocks the Sun's light, and where the Moon's disk would appear entirely unilluminated.

By default the eclipse is drawn with the local vertical in Cambridge uppermost (Zenith up), so that it is orientated as you would see it looking up at the Moon. The compass shows the direction of celestial north relative to the local vertical. Alternatively, you can orientate the sky with celestial north orientated uppermost, by selecting the option North up.

Begin typing the name of a town near to you, and then select the town from the list of options which appear below.

Selecting the option Diagram of Moon's path produces a static display of the Moon's path over the duration of the eclipse.

The lower panel shows the Moon's position in the sky relative to the horizon, as seen from Cambridge.

A penumbral eclipse

Like other lunar eclipses, penumbral eclipses occur whenever the Earth passes between the Moon and Sun, such that it obscures the Sun's light and casts a shadow onto the Moon's surface. But unlike other kinds of eclipses, they are extremely subtle events to observe.

In a penumbral eclipse the Moon passes through an outer region of the Earth's shadow called the penumbra. This is the outer part of the Earth's shadow, in which the Earth appears to cover part of the Sun's disk, but not all of it (see diagram below). As a result, the Moon's brightness will be reduced, as it is less strongly illuminated by the Sun, but the whole of the Moon's disk will remain illuminated to some degree.

The effect is only perceptible to those with very astute vision, or in carefully controlled photographs.

Moreover, on this occasion no more than 35% of the Moon's face will pass within the Earth's penumbra, even at the moment of greatest eclipse, making it especially difficult to notice any reduction in the Moon's brightness.

The geometry of a lunar eclipse
The geometry of the Earth's shadow. Within the Earth's penumbral shadow, the planet covers some fraction the Sun's disk. Only within the smaller umbra does the Earth cover the entirety of the Sun's disk. Any areas of the Moon's surface that pass through the penumbra appear darker than usual as the Earth is obstructing some of the sunlight that usually illuminates them. Areas within the umbra, meanwhile, receive no illumination from the Sun at all.

Timing

The table below lists the times when each part of the eclipse will begin and end.

Local
time
UTC
23:0803:08Moon begins to enter the Earth's penumbra
00:3104:31Greatest eclipse
01:5305:53Moon leaves the Earth's penumbra

Visibility of the eclipse

Eclipses of the Moon are visible anywhere where the Moon is above the horizon at the time. Since the geometry of lunar eclipses requires that the Moon is directly opposite the Sun in the sky, the Moon can be seen above the horizon anywhere where the Sun is beneath the horizon.

The map below shows where the eclipse of July 5 will be visible.

Map of where the eclipse of July 2020 will be visible.
Map of where the eclipse of July 2020 will be visible. Click here to expand.

The eclipse geometry

Lunar eclipses occur when the Sun, Earth and Moon are aligned in a straight line, so that the Earth passes between the Sun and Moon and casts a shadow onto the latter's surface.

Each time the Moon orbits the Earth, it passes almost opposite to the Sun in the sky as it reaches Full Moon. If the Moon orbited the Earth in exactly the same plane that the Earth orbits the Sun, the Earth would pass between the Sun and Moon and create a lunar eclipse at Full Moon every month.

The Moon's orbit is tipped up by 5° relative to the Earth's orbit around the Sun, represented by the grid above. Lunar eclipses only occur at full moon if they occur when the Moon is close to the Earth–Sun plane, at points called the Moon's nodes.

In fact, the Moon's orbit is tipped up at an angle of 5° relative to the Earth's orbit around the Sun. This means that the alignment of the Sun—Earth—Moon line at Full Moon usually isn't exact. As a result, an observer on the Moon would see the Earth pass a few degrees to the side of the Sun.

In the diagram to the right, the grid represents the plane of the Earth's orbit around the Sun. As it circles the Earth, the Moon passes through this Earth–Sun plane twice each month, at the points on the left and right labelled as nodes. A lunar eclipse happens only when one of these node crossings happens to coincide with Full Moon. This happens roughly once every six months, usually two weeks before or after a solar eclipse.

Further information

This eclipse is a member of Saros series 149. The position of the Moon at the moment of greatest eclipse is as follows:

Object Right Ascension Declination Constellation Angular Size
The Moon 18h58m 24°04'S Sagittarius 31'30"

The coordinates above are given in J2000.0.

Next/previous eclipses

« Previous Next »
Visible from the Contiguous United States Worldwide Worldwide Visible from the Contiguous United States
11 Feb 2017 05 Jun 2020 Penumbral Lunar Eclipses 30 Nov 2020 30 Nov 2020
21 Jan 2019 05 Jun 2020 Lunar Eclipses 30 Nov 2020 30 Nov 2020
21 Jan 2019 21 Jun 2020 Eclipses 30 Nov 2020 30 Nov 2020

The sky on 5 Jul 2020

The sky on 5 July 2020
Sunrise
05:11
Sunset
20:24
Twilight ends
22:35
Twilight begins
02:59

14-day old moon
Waning Gibbous

99%

14 days old

Planets
Rise Culm. Set
Mercury 05:02 12:17 19:31
Venus 03:03 10:11 17:20
Moon 20:20 00:48 05:16
Mars 00:11 06:09 12:07
Jupiter 20:51 01:29 06:08
Saturn 21:12 01:56 06:40
All times shown in EDT.

Source

[1] – 

The lunar eclipse predictions presented on this website were computed using EphemerisCompute.

This is an open-source tool which traces the positions of the Sun, Earth and Moon over the course of each eclipse and traces the path of the Moon through the Earth's shadow. It was written by the author and freely available for download from GitHub.

It takes the positions of each body from the JPL DE430 planetary ephemeris.

[2] – 

Espanak, F., & Meeus, J., Five Millennium Canon of Solar Eclipses: -1999 to +3000, NASA Technical Publication TP-2006-214141 (2006)

[3] – 

The list of countries from which the eclipse is visible was computed on the basis of shape files available from DIVA-GIS.

License

You may embed the map above in your own website. It is licensed under the Creative Commons Attribution 3.0 Unported license, which allows you to copy and/or modify it, so long as you credit In-The-Sky.org.

You can download it from:
https://in-the-sky.org/news/eclipses/lunar_20200705.png

Related news

28 Jun 2020  –  Moon at First Quarter
05 Jul 2020  –  Full Moon
12 Jul 2020  –  Moon at Last Quarter
20 Jul 2020  –  New Moon

Image credit

None available.

Share

Cambridge

Latitude:
Longitude:
Timezone:

42.38°N
71.11°W
EST

Color scheme