Asteroid 68 Leto will be well placed, lying in the constellation Cetus, well above the horizon for much of the night.
Regardless of your location on the Earth, 68 Leto will reach its highest point in the sky around midnight local time.
From Fairfield, it will be visible between 21:19 and 04:35. It will become accessible at around 21:19, when it rises to an altitude of 21° above your south-eastern horizon. It will reach its highest point in the sky at 00:57, 43° above your southern horizon. It will become inaccessible at around 04:35 when it sinks below 21° above your south-western horizon.
The geometry of the alignment
This optimal positioning occurs when it makes its closest approach to the point in the sky directly opposite to the Sun – an event termed opposition. Since the Sun reaches its greatest distance below the horizon at midnight, the point opposite to it is highest in the sky at the same time.
At around the same time that 68 Leto passes opposition, it also makes its closest approach to the Earth – termed its perigee – making it appear at its brightest in the night sky. This happens because when 68 Leto lies opposite to the Sun in the night sky, the solar system is lined up so that 68 Leto, the Earth and the Sun lie in a straight line with the Earth in the middle, on the same side of the Sun as 68 Leto.
On this occasion, 68 Leto will pass within 1.291 AU of us, reaching a peak brightness of magnitude 9.6. Nonetheless, even at its brightest, 68 Leto is a faint object beyond the reach of the naked eye; binoculars or a telescope of moderate aperture are needed.
Finding 68 Leto
The chart below indicates the path of 68 Leto across the sky around the time of opposition.
It was produced using StarCharter and is available for download, either on dark background, in PNG, PDF or SVG formats, or on a light background, in PNG, PDF or SVG formats.
The position of 68 Leto at the moment of opposition will be as follows:
Object | Right Ascension | Declination | Constellation | Magnitude |
Asteroid 68 Leto | 00h37m50s | 5°14'S | Cetus | 9.6 |
The coordinates above are given in J2000.0.
The sky on 29 Sep 2020
The sky on 29 September 2020 | ||||||||||||||||||||||||||||||||||
98% 12 days old |
All times shown in EDT.
|
Source
The circumstances of this event were computed from orbital elements made available by Ted Bowell of the Lowell Observatory. The conversion to geocentric coordinates was performed using the position of the Earth recorded in the DE430 ephemeris published by the Jet Propulsion Laboratory (JPL).
The star chart above shows the positions and magnitudes of stars as they appear in the Tycho catalogue. The data was reduced by the author and plotted using PyXPlot. A gnomonic projection of the sky has been used; celestial coordinates are indicated in the J2000.0 coordinate system.
Image credit
© NASA/Galileo 1993. Pictured asteroid is 243 Ida.