© NASA/JPL/MESSENGER

Mercury at greatest elongation east

Dominic Ford, Editor
From the Inner Planets feed

Objects: Mercury
Please wait
Loading 0/4
Click and drag to rotate
Mouse wheel to zoom in/out
Touch with mouse to dismiss
The sky at

Mercury will reach its greatest separation from the Sun in its May–Jun 2020 evening apparition. It will be shining brightly at mag 0.4.

From Jacksonville , this apparition will be reasonably placed but nonetheless tricky to observe, reaching a peak altitude of 20° above the horizon at sunset on 3 Jun 2020.

Begin typing the name of a town near to you, and then select the town from the list of options which appear below.

May–Jun 2020 evening apparition of Mercury

04 May 2020 – Mercury at superior solar conjunction
29 May 2020 – Mercury at dichotomy
02 Jun 2020 – Mercury at highest altitude in evening sky
04 Jun 2020 – Mercury at greatest elongation east
30 Jun 2020 – Mercury at inferior solar conjunction

The table below lists the altitude of Mercury at sunset over the course of the apparition. All times are given in Jacksonville local time.

Date Sun
sets at
Mercury
sets at
Altitude
at sunset
Direction
at sunset
Mag Phase
13 May 202020:1220:56west-1.492%
16 May 202020:1421:1411°west-1.185%
19 May 202020:1621:3014°west-0.977%
22 May 202020:1821:4416°west-0.669%
25 May 202020:2021:5418°west-0.461%
28 May 202020:2122:0219°west-0.254%
31 May 202020:2322:0720°west0.147%
03 Jun 202020:2522:0920°west0.340%
06 Jun 202020:2622:0820°west0.634%
09 Jun 202020:2722:0419°west0.928%
12 Jun 202020:2921:5717°west1.323%
15 Jun 202020:3021:4715°west1.717%
18 Jun 202020:3021:3412°west2.312%
21 Jun 202020:3121:18west3.08%

Mercury will fade rapidly towards the end of the apparition as it heads towards inferior conjunction, when it will pass between the Earth and Sun. At inferior conjunction, the planet turns its unilluminated side towards the Earth, and so appears as a thin, barely illuminated crescent.

Since Mercury can only ever be observed in twilight, it is particularly difficult to find when it is in a thin crescent phase. Thus, it will be significantly easier to see in the days before it reaches its highest point in the sky than in the days after.

Altitude of Mercury at sunset

A graph of the angular separation of Mercury from the Sun around the time of greatest elongation is available here.

Apparitions of Mercury

28 Nov 2019 – Morning apparition
10 Feb 2020 – Evening apparition
23 Mar 2020 – Morning apparition
04 Jun 2020 – Evening apparition
22 Jul 2020 – Morning apparition
01 Oct 2020 – Evening apparition
10 Nov 2020 – Morning apparition

Observing Mercury

Mercury's orbit lies closer to the Sun than the Earth's, meaning it always appears close to the Sun and is lost in the Sun's glare much of the time.

It is observable for only a few weeks each time it reaches greatest separation from the Sun – moments referred to as greatest elongation. These apparitions repeat roughly once every 3–4 months, taking place alternately in the morning and evening skies, depending whether Mercury lies to the east of the Sun or to the west.

When it lies to the east, it rises and sets a short time after the Sun and is visible in early evening twilight. When it lies to the west of the Sun, it rises and sets a short time before the Sun and is visible shortly before sunrise.

However, some times of the year are more favourable for viewing Mercury than others. From Jacksonville, it reaches a peak altitude of between 13° and 22° above the horizon at sunset during each evening apparition, depending on the time of year. During its May–Jun 2020 apparition, it will peak at 20° above the horizon at sunset on 3 Jun 2020.

This variability over the course of the year is due to a combination of two factors.

The inclination of the ecliptic to the horizon

The inclination of the ecliptic to the horizon changes over the course of the year, affecting how high planets close to the Sun appear in the sky.

At all times, Mercury lies close to a line across the sky called the ecliptic, which is shown in yellow in the planetarium above. This line traces the path that the Sun takes through the zodiacal constellations every year, and shows the plane of the Earth's orbit around the Sun. Since all the planets circle the Sun in almost exactly the same plane, it also closely follows the planes of the orbits of the other planets, too.

When Mercury is widely separated from the Sun, it is separated from it along the line of the ecliptic. But, at different times of year, the ecliptic meets the horizon at different angles at sunset. This means that Mercury appears at different altitudes above the horizon at different times of year, even if its separation from the Sun is the same.

If the ecliptic meets the horizon at a shallow angle, then Mercury has to be very widely separated from the Sun to appear much above the horizon. Conversely, if the ecliptic is almost perpendicular to the horizon, Mercury may appear much higher in the sky, even if it is actually much closer to the Sun.

At sunset, the ecliptic makes its steepest angle to the horizon at the spring equinox – in March in the northern hemisphere, and in September in the southern hemisphere. Conversely, it meets the horizon at its shallowest angle at the autumn equinox. Because the seasons are opposite in the northern and southern hemispheres, a good apparition of Mercury in one hemisphere will usually be poorly placed in the other.

At sunrise, these dates are also inverted, so that for morning apparitions of Mercury, the ecliptic makes its steepest angle to the horizon at the autumn equinox, and its shallowest angle to the horizon at the spring equinox.

Mercury's elliptical orbit

The orbits of the planets Mercury, Venus and Earth, drawn to scale. The orbit of Mercury is significantly non-circular. Click to expand.

A secondary effect is that Mercury is unusual among the planets for having a significantly non-circular orbit, which varies in its distance from the Sun by 52% between its closest approach (perihelion, labelled P in the diagram to the right) and greatest distance (aphelion, labelled A).

This means that Mercury's separation from the Sun at greatest elongation varies, depending where it lies relative to the aphelion or perihelion points of its orbit. In mid-September and mid-March, the Earth is well placed to view the long axis of Mercury's orbit edge-on.

So, if Mercury appears in the evening sky in mid-September, or in the morning sky in mid-March, then it appears more widely separated from the Sun than usual. Specifically, at each apparition, Mercury reaches a separation from the Sun of between 18 and 28°. During its May–Jun 2020 apparition, it will reach a maximum separation of 23° to the Sun's east at greatest elongation.

The optimum time for an apparition of Mercury

The maximum altitude of Mercury during all its evening apparitions between 2000 and 2050, as a function of the day of the year on which greatest western elongation occurs. Different colours show the altitudes observed from different latitudes. Click to expand.

The two effects described above are of similar magnitude, though the inclination of the ecliptic to the horizon is the more significant. They conspire to make Mercury much easier to observe from the southern hemisphere than from the north.

In the southern hemisphere, apparitions of Mercury which occur when the ecliptic plane is favourably inclined to the horizon also coincide with apparitions when Mercury is close to aphelion. In the northern hemisphere, unfortunately the opposite is true: when the ecliptic plane is favourably inclined, Mercury is close to perihelion.

The plot to the right shows the maximum altitude of Mercury during all its evening apparitions between 2000 and 2050, as observed from a range of different latitudes on Earth. The highest altitudes are seen exclusively from the southern hemisphere.

Mercury's position

The position of Mercury when it reaches greatest elongation will be:

Object Right Ascension Declination Constellation Magnitude Angular Size
Mercury 06h34m10s 24°44'N Gemini 0.4 8.2"
Sun 04h51m 22°30'N Taurus -26.7 31'31"

The coordinates above are given in J2000.0.

The sky on 4 Jun 2020

The sky on 4 June 2020
Sunrise
06:22
Sunset
20:25
Twilight ends
22:01
Twilight begins
04:46

13-day old moon
Waxing Gibbous

99%

13 days old

Planets
Rise Culm. Set
Mercury 08:00 15:06 22:11
Venus 06:17 13:17 20:16
Moon 19:23 00:48 06:13
Mars 01:57 07:41 13:24
Jupiter 23:16 04:26 09:37
Saturn 23:33 04:47 10:01
All times shown in EDT.

Source

The circumstances of this event were computed using the DE430 planetary ephemeris published by the Jet Propulsion Laboratory (JPL).

This event was automatically generated by searching the ephemeris for planetary alignments which are of interest to amateur astronomers, and the text above was generated based on an estimate of your location.

Related news

04 Jun 2020  –  Mercury at greatest elongation east
22 Jul 2020  –  Mercury at greatest elongation west
25 Jul 2020  –  Mercury at highest altitude in morning sky
27 Sep 2020  –  Mercury at highest altitude in evening sky

Image credit

© NASA/JPL/MESSENGER

Share

Jacksonville

Latitude:
Longitude:
Timezone:

30.33°N
81.66°W
EDT

Color scheme